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Abstract

Collective I/O is a widely used technique to improve I/O
performance in parallel computing. It can be implemented
as a client-based or server-based scheme. The client-based
implementation is more widely adopted in MPI-IO software
such as ROMIO because of its independence from the stor-
age system configuration and its greater portability. How-
ever, existing implementations of client-side collective I/O
do not take into account the actual pattern of file striping
over multiple I/O nodes in the storage system. This can
cause a significant number of requests for non-sequential
data at I/O nodes, substantially degrading I/O performance.

Investigating the surprisingly high I/O throughput
achieved when there is an accidental match between a par-
ticular request pattern and the data striping pattern on the
I/O nodes, we reveal the resonance phenomenon as the
cause. Exploiting readily available information on data
striping from the metadata server in popular file systems
such as PVFS2 and Lustre, we design a new collective I/O
implementation technique, resonant I/O, that makes reso-
nance a common case. Resonant I/O rearranges requests
from multiple MPI processes according to the presumed
data layout on the disks of I/O nodes so that non-sequential
access of disk data can be turned into sequential access,
significantly improving I/O performance without compro-
mising the independence of a client-based implementation.
We have implemented our design in ROMIO. Our experi-
mental results on a small- and medium-scale cluster show
that the scheme can increase I/O throughput for some com-
monly used parallel I/O benchmarks such as mpi-io-test and
ior-mpi-io over the existing implementation of ROMIO by
up to 157%, with no scenario demonstrating significantly
decreased performance.

1. Introduction

As large-scale scientific applications running on clusters
become increasingly I/O intensive, it is important to have
effective system support for efficient I/O between the pro-
cesses on the compute nodes issuing I/O requests, and the
disks on the I/O nodes servicing the requests [4, 5, 18]. A
problematic situation in I/O performance is the issuance of
requests for many small non-contiguous I/O accesses, be-
cause un-optimized servicing of these requests results in
low disk efficiency and high request processing cost. Many
techniques have been proposed to address this problem, in-
cluding data sieving [26], list I/O [6], datatype I/O [7],
and collective I/O [26]. Of these, collective I/O is one of
the more commonly used techniques and usually yields the
greatest improvement in I/O performance. This is because
collective I/O rearranges requests from multiple processes
(global optimization), rather than optimizing requests from
each individual process (local optimization).

1.1 Transforming Non-contiguous Access
into Contiguous Access

A common technique used in the aforementioned
schemes for optimizing I/O performance is to transform
small requests of non-contiguous access into large requests
of contiguous access. Let us first see how the read opera-
tion can benefit from collective I/O. As depicted in Figure 1,
four processes, P0, P1, P2, and P3, each requests four seg-
ments that are not adjacent in the logical file space. Because
an I/O request must be issued for logically contiguous data,
each process issues four requests. Without collective I/O
there would be 16 small requests from the compute nodes
to the I/O nodes, with each I/O node receiving and servicing
four requests in random order.

With collective I/O, all the requested data is divided into
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Figure 1. Illustration of the ROMIO implementation of two-
phase collective I/O. Data is read by each process (the aggregator),
P0, P1, P2, or P3, which is assigned a contiguous file domain in
the logical file space, first into its temporary buffer in phase I and
then to the user buffer of the process that actually requested them
in phase II.

four file domains, each consisting of four contiguous seg-
ments, and each process issues a single request to read data
belonging to a single file domain into its buffer. After the
reads complete, each process retrieves its respective data
from the others’ buffers via inter-node message passing.
As an example of a widely used collective-I/O implemen-
tation, ROMIO [26] adopts a two-phase strategy. In the
first phase, each process serves as an aggregator, with pro-
cess Pk (k ≥ 0) responsible for reading the kth file do-
main into its buffer. In the second phase, data is exchanged
among the processes to satisfy their actual requests. The
rationale for this implementation of collective I/O is two-
fold. First, both the number of requests issued to the I/O
nodes, and the request processing overhead, are reduced.
Second, contiguous access is expected to be more efficiently
serviced on the disk-based I/O servers than non-contiguous
access because contiguous access requires fewer disk head
movements, which can account for more than an order of
magnitude disparity in disk throughput. Clearly, for collec-
tive I/O to improve rather than degrade performance, the
gains must outweigh the communication overhead incurred
in this second phase that does not exist in the traditional
non-collective I/O scheme,

1.2 The Resonance Phenomenon

To analyze how collective I/O performs in a typical clus-
ter computing environment, we set up an experimental plat-
form consisting of eight nodes, four configured as com-
pute nodes, and the other four as I/O nodes, managed by
a PVFS2 parallel file system [1]. File data was striped over
the I/O nodes. We used the default PVFS2 striping unit size
of 64KB. (More details of the experimental platforms are
given in Section 4.)

In our experiment we ran N -process MPI programs,
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Figure 2. Throughput of I/O nodes when running a demonstra-
tion MPI program with two and four processes, varying the seg-
ment size from 32KB to 1024KB, with and without collective I/O.
Throughput peaks at 64KB with non-collective-4, and at 128KB
with non-collective-2, exhibiting resonance between the data re-
quest pattern and the striping pattern.

where N was 2 or 4, one process per compute node, that
read data from a 10GB file striped over the four I/O nodes.
The access pattern was generally the same as that illustrated
in Figure 1. Specifically, the processes repeatedly call col-
lective I/O to read the entire file from beginning to end. In
each call, process i, i ∈ {0, 1, . . . , N − 1}, reads segments
k ∗ N + i, k ∈ {0, 1, 2, 3}, in the file range specified by
the call. The size of the segment was varied from 32KB
to 1024KB (powers of two times 32KB) over different runs
of the program. Figure 2 shows the I/O throughput of the
system using collective I/O with N processes and the var-
ious segment sizes, denoted as collective-I/O-N, where N
is 2 or 4. The graph also shows the throughput with N
processes when each process makes four distinct I/O calls
for each of its four segments of contiguous data, denoted
as non-collective-I/O-N. As we expect, with collective-I/O-
N, increasing segment size (amount of requested data) gives
increasing throughput. This is consistent with the fact that
the disk is more efficient with large contiguous data access
because of better amortized disk seek time. Surprisingly,
however, we see that the throughput for non-collective-
I/O-4 reaches a peak value of 175MB/s at 64KB segment
size, which is much higher than the 42MB/s throughput for
collective-I/O-4 at the same segment size. Similarly, for
non-collective-I/O-2 there is a peak of 149MB/s at 128KB,
versus 72MB/s for collective-I/O-2. This appears to be in-
consistent with the assumption that requests for larger con-
tiguous data would be more efficiently serviced.

The reason for these throughput peaks lies in the order
in which the requests arrive at each I/O node. Figure 3
illustrates the different orders when collective I/O is used
(Figure 3(a)) and is not used (Figure 3(b)) in the case of
four processes. When collective I/O is used, four contigu-
ous segments are assigned to a process as a file domain.
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Figure 3. Illustration of how a resonance is developed: when
collective I/O is used (a), each process reads four contiguous seg-
ments, but each I/O node receives requests from four processes in
an unpredictable order. When collective I/O is not used (b), a pro-
cess sends four requests for four non-contiguous segments to one
I/O node, making the service order of the requests at the node con-
sistent with the offsets of the requested data in the file domain.

Because both segment size and striping unit size are 64KB,
the four requests to a particular I/O node, each for 64KB
data, come from four concurrent processes and arrive in an
order determined by the relative progress of the processes,
which is unpredictable. In an operation manual for the Lus-
tre cluster file system this issue is raised as a disadvantage
of striping a file into multiple objects (the portion of file data
on one I/O server). Consider a cluster with 100 clients and
100 I/O servers. Each client has its own file to access. The
manual [24] states: “If each file has 100 objects, then the
clients all compete with one another for the attention of the
servers, and the disks on each node seek in 100 different di-
rections. In this case, there is needless contention.” This ex-
actly describes the situation with collective I/O when mul-
tiple processes access the same file on multiple I/O nodes
simultaneously. We note that while the I/O scheduler at the
I/O node can re-order the requests for a sequential dispatch-
ing order, this re-ordering operation will rarely occur unless
the I/O system is saturated and many requests are pending.
Therefore, an I/O node usually serves requests in the order
that they are received—in random order from the viewpoint
of I/O node—which degrades disk performance. In con-
trast, when collective I/O is not used, all four requests to an

I/O node are from the same process, which sends them one
by one in the order of their offsets in the logical file space.
Because the file system generally allocates data on the disk
in an order consistent with their offsets in the file domain,
the consequent sequential service order at an I/O node leads
to an effective prefetching at the I/O node [15]. We name
this scenario, in which an accidental match between data re-
quest pattern and data striping pattern produces sequential
disk access and peak disk performance, resonance in the
distributed I/O service, a term borrowed from the physics
field. A similar resonance exists with non-collective-I/O-2
with 128KB segment size, in which two I/O nodes are ded-
icated to service requests from one process (one segment
is striped on two nodes), and no I/O node receives requests
from multiple processes that cause random disk accesses.
We also observe that non-collective-I/O-2 with 64KB seg-
ment size generates a resonance, though with a throughput
(125MB/s) lower than the one (149MB/s) at 128KB seg-
ment size. The lower throughput is a result of under-utilized
I/O nodes, because at any time only two of the four I/O
nodes are servicing requests from the two processes.

Analyzing the conditions for resonance to occur, we see
that the key factor for high I/O throughput is not simply
accessing a contiguous file domain, rather, it is ensuring se-
quential access of data on an I/O node. When data is striped
over multiple I/O nodes, collective I/O, which designates
one contiguous file domain to a process, allows requests for
data on an I/O node to be from multiple processes, which
introduces the indeterminacy that leads to non-sequential
access. If we can rearrange requests involved in collective
I/O such that all the requests for data on an I/O node come
from one process, then resonance would be a common case
when each process requests its data in ascending order of
file offset. This is one the of techniques used in our pro-
posed implementation of collective I/O, called resonant I/O.

The rest of this paper is organized as follows. Section 2
gives a brief description of related work. In Section 3 we
describe the design and implementation of resonant I/O in
detail. Performance evaluation results are presented in Sec-
tion 4, followed by conclusions in Section 5.

2 Related Work

There is a large body of work on improving I/O perfor-
mance for high-performance computing. Among the work
directly related to our work presented here, there are two
important issues that have been studied.

The first issue is how to efficiently access a large num-
ber of small, non-contiguous pieces of data. This access
pattern, typically produced by directly using UNIX-style
read and write, can incur a large overhead in processing
requests. It also prevents systems from inferring the ‘big
picture’ of access patterns to enable optimization in a larger



scope, such as rearrangement of requests for sequential disk
access. Data sieving [26] is one of the techniques proposed
to address this issue by aggregating small requests into large
ones. Instead of accessing each small piece of data sep-
arately, data sieving accesses a large contiguous scope of
data that includes the small pieces of data. If the additional
unrequested data, called holes, is not excessive, the bene-
fit can be significant. However, data sieving cannot ensure
that its aggregated large requests from multiple clients are
serviced at each I/O node in an order that minimizes disk
seeks, which is the objective of resonant I/O.

Datatype I/O [7] and list I/O [6] are the two other tech-
niques that allow users to specify multiple non-contiguous
accesses with a single I/O function call. Datatype I/O is
used for accesses with certain regularity, while list I/O han-
dles a more general case. Compared to these techniques col-
lective I/O is more aggressive in aggregating small requests
by re-arranging requests collectively issued by a group of
processes. However, while collective I/O does increase
the size of a request for data contiguous in the logical file
space, it may adversely cause requests to arrive at the I/O
nodes in random order, as we have shown. (As will be de-
scribed later, list I/O will play a role in our design.) In other
work [11], an optimization is made to improve the ROMIO
collective-I/O efficiency in a cluster where data is striped
on the disks local to each compute node. The efficiency is
achieved by making each agent process access only data on
its local disks. In contrast, resonant I/O addresses I/O effi-
ciency in a cluster with dedicated I/O nodes that may each
service requests from multiple compute nodes.

The second issue is portability. As most high-
performance cluster computing platforms are customized
configurations, there are many variations in software and
hardware architectures. To be widely adopted, a technique
must be minimally dependent on specific system structures
and configurations. As an example, ROMIO [26] is a high-
performance and portable implementation of MPI-IO [27]
in which the aforementioned optimization techniques, in-
cluding collective I/O, are included. ROMIO uses ADIO
(Abstract Device Interface for MPI-I/O) [25], an internal
layer to accommodate the machine-dependent aspects of the
implementation of MPI-IO, so that MPI-IO can be imple-
mented portably on top of ADIO. Because the configura-
tion of the storage subsystem of a cluster may be modified
independently of the computing subsystem, it is desirable to
implement I/O optimization techniques on the client side to
keep them independent of configuration of storage subsys-
tem. Collective I/O, as well as other commonly used tech-
niques, are usually implemented on the client side. In con-
trast, server-side implementations such as server-directed
collective I/O [23] are less adopted. Server-directed col-
lective I/O was developed as a component of Panda, an I/O
library for accessing multi-dimensional arrays, on the IBM

SP2 supercomputer [23]. In this system I/O nodes are heav-
ily involved in the re-arrangement of I/O requests by col-
lecting request information from compute nodes and then
directing them for sending/receiving data. Disk-directed
I/O [12] is a strategy similar to server-directed collective
I/O, with the addition of explicit scheduling of requests ac-
cording to the data layout on disk. While these two tech-
niques can provide performance benefits similar to resonant
I/O, both of them compromise the independence of middle-
ware on compute-side I/O, such as MPI-IO, from configu-
ration changes on the I/O-node side.

3 The Design of Resonant I/O

The design objective of resonant I/O is to ensure that re-
quests arrive at each I/O node in ascending order of file off-
sets for requested data from the same file. While data layout
on disk usually matches offsets in the logical file space, the
design allows the disk to service the requests in its preferred
order, i.e., from small disk addresses to high addresses (pos-
sibly sequential), to achieve high disk throughput.

3.1 Making Collective I/O Aware of Data
Layout

To induce resonance the compute node must know on
which I/O node requested data is stored. Because an impor-
tant design goal for the compute-node-side middleware is
keeping the middleware independent of the I/O node side’s
configuration to ensure portability and system flexibility,
explicitly requesting this information from the I/O nodes is
undesirable.

Fortunately, the configuration information that is needed
in resonant I/O is readily available on the compute node
side in many commonly used parallel file systems, includ-
ing PVFS2 [1, 13], Lustre [8, 22], and GPFS [21]. In these
systems meta-data service is separate from data service to
avoid bottlenecks in data transfer. As such, a compute node
needs to first communicate with the meta-data server to ac-
quire the locations of its requested data on the I/O nodes
before it can access data on I/O nodes. In fact, we only
need to know the striping unit size and number of I/O nodes,
from which we can determine which requested data is on the
same I/O node. We are aware that these two parameters may
be set by users when the file is created in some file systems
such as Lustre. However, to keep the design general and the
interfaces of collective I/O unchanged, we do not assume
that users would provide these parameters when they call
collective I/O functions.



3.2 Process Access Set and I/O Node Ac-
cess Set

Because resonant I/O is an implementation of collective
I/O, it does not make any changes to the function inter-
faces seen by programmers. As usual, each participant in
a resonant-I/O operation needs to call the same collective-
I/O function to specify one file segment or multiple non-
adjacent file segments in a request. To execute the function
call the processes are first synchronized to exchange infor-
mation on the requested file segments so that every process
knows all the file data requested in the collective I/O. After
that, a collective-I/O implementation strategy needs to de-
cide, for each process, which data the process is responsible
for accessing. We call the set of data that is assigned to a
process its access set. Once a process knows its access set it
generates one or multiple requests to the I/O nodes to access
the data specified by the access set. In ROMIO collective
I/O all file data to be requested are evenly partitioned into
contiguous file domains. Each file domain is the access set
of a process, which then uses only one request to access the
data. Because this method of forming access sets based on
contiguity in the logical file seeks to reduce the number of
requests as well as their processing overhead, the resulting
pattern of requests does not necessarily help improve disk
efficiency, as described in Section 1.

To achieve disk efficiency in the implementation of col-
lective I/O, we define an I/O node’s access set as the set of
data that is requested in a collective I/O and is stored on the
I/O node. One of the objectives of resonant I/O is to ensure
that an I/O node’s access set is accessed by requests arriv-
ing in the ascending order of the offsets of the data in the
logical file domain. Note that it is the LBNs (logical block
numbers)1 of the data that represent the on-disk locations of
the data and directly determine the disk efficiency, and there
is a mapping from the logical file offsets to on-disk LBNs
by file systems. Therefore, in theory, ascending file offsets
do not necessarily correspond to ascending LBNs, but in
practice the correspondence generally holds, especially for
file systems managing large files. Furthermore, our objec-
tive is that client-side optimization, such as resonant I/O,
not require detailed configuration information on the server
side. Using file offsets for this purpose fulfills this objec-
tive. Because the striping unit size and the number of I/O
nodes are available, processes on the compute nodes can
easily calculate the access set of each I/O node.

The reasons that an I/O node’s access set might be re-
quested in a random order are that (1) data in the I/O node’s
access set belongs to multiple processes’ access sets; and,
(2) these processes send their requests in random order be-
cause of their unpredictable relative progress. To produce

1If the I/O node is attached to a disk array the LBN refers to the address
in the array.

an ascending access order at an I/O node, resonant I/O can
take either of two actions: (1) make one process’ access set
be an I/O node’s access set; or, (2) make multiple processes
send their requests in a pre-defined order. In the following
we describe how resonant I/O takes the first action as its
basic approach to produce an ascending access order, and
takes the second action to make an optimization for a par-
ticular request pattern.

3.3 Designating Agent Processes Accord-
ing to the I/O Node’s Access Set

If a process’ access set is the same as an I/O node’s ac-
cess set, and the process sends its requests to the I/O node
in ascending order of offset, then the I/O node will receive
all of its requests in the preferred order. We call such a pro-
cess the I/O node’s agent process. Assuming each I/O node
needs one agent process, for a given I/O node we select the
process that requests the largest amount of data from the I/O
node and has not been selected as another I/O node’s agent
process. If more than one such process exists, we arbitrarily
choose the one with lowest rank in the MPI process group.
As some data requested by an agent process may belong to
other processes and need to be transferred between the agent
process and their owner processes, this strategy minimizes
the data to be transferred. The data transfer takes place be-
fore access to the I/O nodes in the write operation, and after
access to the I/O nodes in the read operation. This data
transfer is similar to the inter-process communication phase
in ROMIO collective I/O. However, we make a special op-
timization for the read operation in this phase to minimize
the transfer cost, as follows.

Synchronization is usually required after each agent has
read data from I/O nodes into its buffer and before the inter-
process data transfer starts. This synchronization can de-
grade I/O performance by forcing all processes to wait for
the slowest process to read its data; moving the synchro-
nization ahead of the read operation would obviate this.
To this end, we let all agent processes send their requests
for their access sets in a non-blocking fashion in the first
phase of the read operation, assuming non-blocking I/O is
supported, and synchronize their progress immediately af-
ter sending requests instead of after the data has been read.
Then each process proceeds to read directly from the I/O
nodes the data that it needs but has not requested in the
first phase. If the process is not an agent, the data is ac-
tually all that it needs to access. This step replaces inter-
process data transfer to eliminate synchronization immedi-
ately before the second phase. In this arrangement, we ac-
tually make many requests issued in the first phase serve as
prefetching hints for the requests issued in the second phase.
By performing the synchronization we ensure that requests
in the second phase arrive after the I/O nodes receive re-



quests from the agents in the first phase. Thus the request
service order at an I/O node is determined by the arrival or-
der of requests in the first phase. When data is read from the
disk, the requests of the second phase would be satisfied in
the buffer cache of the I/O node. Usually the buffer cache
is large enough to hold the data when the requests in the
second phase arrive. By using the prefetching-like method,
the two phases in resonant I/O can be overlapped to achieve
higher efficiency.

Because an agent process may send many requests to
an I/O node in resonant I/O, compared with one request
in the ROMIO collective I/O, the request processing cost
can be substantially higher. To reduce this cost resonant
I/O uses list I/O to pack small requests for non-contiguous
data segments into one or a few large requests to minimize
request processing overhead. For the ROMIO implemen-
tation in MPICH2, one list I/O can accommodate up to
MAX ARRAY SIZE (64) non-contiguous data segments,
which can significantly reduce the cost.

3.4 Timing Requests from Different Pro-
cesses

Because the second phase in the conventional implemen-
tation of collective I/O is the additional cost that does not
exist in the non-collective I/O scheme, we seek to eliminate
it subject to the condition that the access pattern satisfies a
non-overlapping condition. This condition requires that in
a collective I/O call the file offsets of the data requested by
process i are smaller than those of data requested by process
i + 1 (i = 0, 1, ..., N − 2; N is the number of processes).
If a collective I/O call satisfies the condition for all the re-
quests in the call to a given I/O node, those from process
i will be for data with offsets smaller than those from pro-
cess j (i < j). If we place the processes into sets accord-
ing to the I/O nodes to which they send their requests such
that processes in different sets do not share I/O nodes, and
ensure that for all processes in a set, a process with lower
rank always sends its request earlier than a process of higher
rank, then the I/O nodes will receive the requests in the pre-
ferred order. For this particular request pattern, by timing
the sending of requests in different processes, we can pro-
duce the same effect on request arrival order as by using
process agents. Then we can eliminate the second phase in
which data is transferred to their owner processes, because
each process requests its own data.

When the non-overlapping condition is satisfied, in each
process set the process with lowest rank sends its request(s)
first, and after a short delay it sends a synchronous message
to the process with the next higher rank in the set, which
then repeats the procedure. The delay is introduced to en-
sure that requests arrive at I/O nodes in the preferred order.
Our study has shown that because disk access time is usu-
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Figure 4. Algorithmic Description of Resonant I/O

ally much higher than message passing time, this delay can
be chosen from a relatively large range, such as from 0.1ms
to 1ms, with little effect on I/O performance, especially in
a system supporting non-blocking I/O where a process can
send its message without waiting to receive its requested
data. (We note that the choice of delay does not affect
the correctness of the protocol, only performance.) If non-
blocking I/O is not supported no delay would be imposed
and I/O access among processes would be fully serialized.

Because we coordinate request sending among pro-
cesses, the benefits of improved disk efficiency will out-
weigh the penalty of reduced concurrency of I/O operations
if the number of processes is comparable to the number of
I/O nodes. Otherwise, the serialization could become a per-
formance bottleneck. To maintain balance, we set up n pro-
cess groups in each process set sharing a common set of
I/O nodes, where n is the number of the I/O nodes. We
place the ith process in a set, sorted by rank, into group k,
where k = i/n. Then processes in the same group send
their requests without coordination, and the timing (or seri-
alization) is carried out between process groups.

This timing technique can also be applied to make the
approach using agent processes more scalable. When the
number of processes in a collective I/O is much larger than
the number of I/O nodes, and the amount of data to be re-
quested is very large, resonant I/O can designate more than
one process agent for each I/O node for higher network
bandwidth. This is made possible by timing the request
sending in these multiple agent processes.

3.5 Putting it All Together

Figure 4 summarizes the design of resonant I/O. The ob-
jective in the design is to make requests served at each I/O
node arrive in the preferred order. This is achieved by ei-



ther allowing requests to one I/O node to be from the same
agent process or by coordinating the issuance of requests
from multiple processes. In achieving this objective, sev-
eral optimizations were applied, including minimization of
the cost of synchronization and elimination of the second
phase of a conventional implementation of collective I/O.

4 Performance Evaluation and Analysis

To evaluate the performance of resonant I/O and com-
pare it with the widely used collective I/O implementation
in ROMIO, we used two different experimental platforms.
The first is our own dedicated system, an eight-node clus-
ter. All nodes are of identical configuration, each with dual
1.6GHz Pentium processors, 1GB memory, and an 80GB
SATA hard disk. The cluster uses the PVFS2 parallel virtual
file system (version 2.6.3), in which four nodes were con-
figured as compute nodes and the other four as I/O nodes.
Each node runs Linux 2.6.21 and uses GNU libc 2.6. One
of the I/O nodes is also configured as the meta-data server
of the file system. We used MPICH2-1.0.6 with ROMIO
for our MPI programs. All nodes are connected through
a switched Gigabit Ethernet network. The default striping
unit size, 64KB, is used to stripe file data over the I/O nodes.
The second platform, used to evaluate how the performance
of resonant I/O scales in a shared production environment,
is described in the section on scaling.

Our resonant I/O is implemented in ADIO on top of
PVFS2. The current version of ADIO does not provide gen-
uine support for non-blocking I/O functions [14]. Because
of this limitation our implementation of resonant I/O makes
some compromises: (1) for the read operation, the second
phase is not initiated until the data requested in the first
phase has been received by the agent processes, which nul-
lifies much of the benefit of using prefetching-like data ac-
cess in the second phase; and, (2) the I/O operations among
process groups are serialized. The consequence of these
compromises is that experimental results for resonant I/O
presented here are conservative, and potential performance
advantages may not be fully revealed.

In addition to the demonstration program we used in Sec-
tion 1 to exhibit the resonance scenario, we used five well-
known benchmark programs for the evaluation: coll perf
from the MPICH2 software package, mpi-io-test from the
PVFS2 software package, ior-mpi-io from the ASCI Pur-
ple benchmark suite developed at Lawrence Livermore Na-
tional Laboratory [10], noncontig from the Parallel I/O
Benchmarking Consortium [20] at Argonne National Lab-
oratory to test I/O characteristics with noncontiguous file
access [19], and hpio, designed by Northwestern Univer-
sity and Sandia National Laboratories, to systematically
evaluate performance with a diverse set of I/O access pat-
terns [9, 2].
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Figure 5. I/O throughput of the demonstration program with
varying segment sizes and number of processes.

All presented measurements represent arithmetic means
of three runs. The variation coefficients—the ratio of the
standard deviation to the mean—are less than 5% for the
experiments on the dedicated cluster and less than 20% on
the production system. To ensure that all data was accessed
from the disk, we flushed the system buffer caches of the
compute nodes and I/O nodes before each test run.

4.1 Revisiting the Demonstration Pro-
gram

We first revisit the demonstration program presented in
Section 1. Figure 5 shows the I/O throughput observed
when running the program with ROMIO collective I/O and
resonant I/O with two and four MPI processes. The figure
shows that resonant I/O can significantly improve I/O per-
formance. It produces its peak throughput for segment size
of 64KB with four processes and for segment size of 128KB
with two processes, the two scenarios where resonance take
place when I/O requests are not collectively issued (c.f. Fig-
ure 2). In these two scenarios, resonant I/O increases I/O
throughput by 151% and 75% over their counterparts in
ROMIO collective I/O, respectively. However, the through-
put of resonant I/O in these two scenarios is less than those
of non-collective I/O shown in Figure 2. This is because res-
onant I/O needs synchronization in each call, which slows
the faster processes. In fact a collective call is not necessary
when an I/O node is dedicated to a process. For a segment
size of 32KB and with two processes, ROMIO collective
I/O coincidentally requests data in the same pattern as res-
onant I/O, so it has almost the same throughput as that of
resonant I/O.

4.2 Results on the Dedicated Cluster

We ran benchmarks coll perf, mpi-io-test, ior-mpi-io,
noncontig, and HPIO on the dedicated cluster to measure



Figure 6. I/O throughput of benchmark coll perf with varying
scale of arrays.

their achieved aggregate I/O throughput when resonant I/O,
and ROMIO collective I/O, were used. Because the I/O
operation in all but coll perf can be either file read or file
write, for all but coll perf we measured the read and write
throughputs separately.

4.2.1 Benchmark coll perf

The benchmark coll perf comes from the MPI source pack-
age. Using collective I/O, this benchmark first writes a 3D
block-distributed array to a file which resides on the parallel
file system corresponding to the global array in row-major
order and then reads it back, and checks if the data is consis-
tent with the written data [3]. We scaled the array size be-
tween 643 and 10243 to test the effect of storage throughput.
We isolated read and write phases with memory flushing
instead of read-after-write used in the original implementa-
tion. Figure 6 shows the read and write throughput for both
resonant I/O and ROMIO collective I/O. Because the I/O
request size is proportional to the array size, as the array
size increases the disk becomes very efficient in servicing
individual requests, and the benchmark quickly achieves its
peak throughput in the system (around 80MB/s). There-
fore, while resonant I/O produces higher throughput, the

Figure 7. I/O throughput of benchmark mpi-io-test with vary-
ing segment sizes.

improvements over ROMIO collective I/O are modest.

4.2.2 Benchmark mpi-io-test

In the mpi-io-test benchmark we used four MPI processes,
one on each compute node, to read a 10GB file. Each pro-
cess reads one segment of contiguous data at a time. In each
collective call, four processes read four segments in a row,
respectively. In the next call, the next four segments are
read. Figure 7 shows the throughput of the benchmark when
resonant I/O and ROMIO collective I/O are used. As ex-
pected for this benchmark we see an I/O resonance (a spike
in I/O throughput) at segment size 64KB. This resonance
occurs with resonant I/O for both the read and write versions
of the benchmark. Interestingly, we found that the ROMIO
collective I/O also exhibits these resonances. Because there
is no overlapping of processes’ access ranges, ROMIO col-
lective I/O does not re-arrange requests, and executes its
I/O as non-collective I/O does. However, for other segment
sizes, ROMIO collective I/O allows each I/O node to re-
ceive requests from multiple processes, and resonant I/O is
able to order request arrivals and substantially increases the
throughput by up to 61%. The figures also show that the
write bandwidth is higher than read bandwidth when the
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Figure 8. I/O throughput of benchmark ior-mpi-io with varying
segment sizes.

segment size is larger than 64KB; this is mainly due to de-
layed write-back.

4.2.3 Benchmark ior-mpi-io

In benchmark ior-mpi-io each of the four MPI processes
reads one quarter of a 1GB file: process 0 reads the first
quarter, process 1 reads the second quarter, and so on. The
reads are executed as a sequence of collective calls. In a
call, each of the four processes reads a segment with the
same relative offset in their respective access scope, start-
ing at offset 0. Figure 8 shows the throughput with dif-
ferent segment sizes. When the segment size is less than
64KB only one I/O node is involved in servicing requests
in each call, so the throughput is very low. The difference
is that requests are from one agent process in resonant I/O
and from four processes in ROMIO collective I/O, which
explains their performance difference in the read version of
the benchmark. The performance advantage of resonant I/O
diminishes with increasing segment size because increas-
ingly amortized disk seek time reduces the penalty of non-
sequential disk access in collective I/O.

Figure 9. I/O throughput of benchmark noncontig with varying
segment sizes.

4.2.4 Benchmark noncontig

Benchmark noncontig uses four MPI processes to read a
10GB file using the vector derived MPI datatype. If the
file is considered to be a two-dimensional array, there are
four columns in the array. Each process reads a column
of the array, starting at row 0 of its designated column.
In each row of a column there are elmtcount elements
of the MPI INT type, so the width of a column is elmt-
count*sizeof(MPI INT). In each collective call, the total
amount of data read by the processes is fixed, determined by
the buffer size, which is 16MB in our experiment. Thus the
larger elmtcount the more small pieces of non-contiguous
data are accessed by each process.

When elmtcount is small, such as 4096, resonant I/O
would need to send requests for a large number of non-
contiguous data segments. Because each list I/O can contain
at most 64 non-contiguous segments using the default list
I/O parameter, multiple list-I/O requests must be made by
each agent process. This creates extra overhead for resonant
I/O as ROMIO collective I/O uses only four requests. Fig-
ure 9 shows that the I/O throughput of resonant I/O is a little
lower than that of ROMIO collective I/O when elmtcount is



4096. However, when elmtcount is increased, resonant I/O
yields higher throughput. Both read and write throughput
peaks at elmtcount of 16K when the segment size equals the
striping unit size and all the data requested by an agent pro-
cess is for itself. For read the peak throughput is 101MB/s,
an improvement of 157% over that of ROMIO collective
I/O, and for write the peak throughput is 96MB/s, an im-
provement of 97% over that of ROMIO collective I/O.

4.2.5 Benchmark HPIO

The benchmark HPIO can generate various data access
patterns by changing three parameters: region count, re-
gion spacing, and region size [2]. In our experiment, we
set region count to 4096, region spacing to 0, and vary re-
gion size from 2KB to 64KB. Using four MPI processes,
the access pattern is similar to the one described for bench-
mark noncontig. Here the length of a column is fixed as
region count (4096) and the width of a column varies from
2KB to 64KB (powers of two times 2KB). Each process
reads its designated column with a collective call. Only one
collective call is made in the benchmark.

Compared with the 16MB data requested in one col-
lective call in noncontig, HPIO accesses much more data
in one collective call, from 32MB to 1GB. This helps the
benchmark to achieve a higher throughput and the high
throughput is consistent across different region sizes, as we
compare Figures 9 and 10. Resonant I/O provides even
higher throughput by rearranging requests to an I/O node,
and produces a resonance peak at a region size of 64KB.

4.3 Resonant I/O Under Interference

In this section we study the impact of interference due to
external competing I/O requests on the performance of res-
onant I/O. For comparison we also show the impact of in-
terference on ROMIO collective I/O. We run two programs,
the demonstration program, denoted by demo, and mpi-io-
test, which concurrently access their respective files that are
striped over the same set of I/O nodes. We use four paral-
lel processes for each program with 64KB segment size. In
this experiment we consider mpi-io-test to be the source of
interference with demo. To control intensity of inteference
we insert a period of compute time between two consecutive
I/O requests in mpi-io-test. Thus the interference intensity is
quantitatively represented by the magnitude of the compute
time—the smaller the computer time the higher the inter-
ference. We also define a metric called relative throughput
as the ratio of the throughput of the program under inter-
ference and the throughput of the program with exclusive
access to the same storage system. We measure both abso-
lute throughput and relative throughput of demo and mpi-
io-test with inter-call compute time ranging from 1 second
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Figure 10. I/O throughput of benchmark HPIO with varying
segment sizes.

to 0 seconds using resonant I/O and ROMIO collective I/O,
respectively (see Figure 11).

For the demo program, the relative throughput of res-
onant I/O drops from 0.90 to 0.43 as the compute time de-
creases from 1 second to 0. In contrast, the relative through-
put of ROMIO collective I/O drops from 0.98 to 0.47. The
relative throughput of resonant I/O drops at a greater rel-
ative rate, which demonstrates that resonant I/O is more
sensitive to interference because sequential request-service
order is more difficult to retain with increasingly high in-
terference from concurrently I/O requests. However, even
when there is no compute time between two consecutive
I/O calls (and so the highest interference intensity), in mpi-
io-test, resonant I/O still achieves an absolute throughput of
48MB/s for demo, which is more than twice the throughput
of ROMIO collective I/O (22MB/s). Meanwhile, when the
interference intensity is the highest, mpi-io-test could poten-
tially reduce the throughput of demo by at least half. From
this perspective, the relative throughput of resonant I/O for
demo, which is 0.43, can be deemed quite acceptable. This
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Figure 11. Absolute and relative throughput of resonant I/O
and ROMIO collective I/O under different interference intensity,
represented by length of the compute time between two consecutive
I/O calls in mpi-io-test.

result shows that the effort at the application/runtime level
to maintain preferred request arrival order still help to im-
prove disk scheduling efficiency even when the competing
load on the disk system is high and there are many pending
requests for the disk scheduler to reorder.

For mpi-io-test, the relative throughput also drops but at a
relatively moderate rate with the increase in interference in-
tensity. Higher interference intensity means more I/O time
in the program’s run time, and the I/O time could be at least
doubled when mpi-io-test runs concurrently with demo in
comparison to when it has exclusive use of the I/O subsys-
tem. Here the relative throughput of resonant I/O is slightly
higher than that of ROMIO collective I/O. The rising curves
representing absolute throughput of mpi-io-test are due to
its increasing I/O demand as its compute time is reduced.

4.4 Scalability of Resonant I/O

In this section we study the scalability of resonant I/O in
a production system environment, the Itanium 2 Cluster at
Ohio Supercomputer Center, which has 110 compute nodes
and 16 storage nodes, each with 4 GB of memory, running
the PVFS2 file system. We ran benchmark mpi-io-test with

Figure 12. I/O throughput as a function of the number of com-
pute nodes, relative to a single node, for benchmark mpi-io-test.

10GB file size and 1MB segment size with different num-
bers of processes, each on a different processor, to a maxi-
mum of 64. Figure 12 shows I/O throughput as a function
of the number of compute nodes, relative to the throughput
achieved on a single node, for benchmark mpi-io-test, for
both resonant I/O and ROMIO collective I/O. As shown,
resonant I/O is as scalable as ROMIO collective I/O. Be-
cause the quantity of data requested in a collective-I/O call
is proportional to the number of processes, the I/O through-
put increases with the number of processes to the limit of
the storage system at 32 processes. When the performance
of the storage system becomes a bottleneck, efficient use
of the disk-based system becomes critical, which explains
the performance advantage of resonant I/O over the ROMIO
collective I/O when the number of processes is larger than
32. In general, both resonant I/O and ROMIO collective I/O
scale well in our experiment. In addition, we note that the
program shared the I/O nodes with other concurrently run-
ning programs during its execution. As the measurements
show, the concurrent I/O requests from other programs do
not negate the effects of resonant I/O arranging a preferred
access order for a higher I/O throughput. This is because
the requests belonging to a collective I/O, implemented as
resonant I/O, still arrive at the I/O system in a bursty fashion
and so retain their preferred order.

5 Conclusions and Future Work

We have proposed, designed, and implemented a
new collective I/O scheme, resonant I/O, that makes
resonance—a phenomenon describing the increase in per-
formance when there is a match between request patterns
and data striping patterns—a common case. Resonant
I/O makes the client-side implementation of collective I/O
aware of the I/O configuration in its rearrangement of re-



quests without compromising the portability of client-side
middleware and the flexibility of server-side configuration.
Our experimental results show significant increases—up to
157%—in I/O throughput for commonly used parallel I/O
benchmarks. Resonant I/O demonstrated advantages both
at scale, and in the presence of competition for I/O services.
Finally, resonant I/O has not been observed to substantially
degrade performance (relative to ROMIO collective I/O) in
any test scenario.

While our experiments have shown that resonant I/O is
a promising technique for the alleviation of the increas-
ingly serious I/O bottleneck in high-performance comput-
ing, there are some limitations in its implementation and
evaluation that will be addressed in future work. First, we
will use asynchronous I/O to fully exploit the performance
potential of resonant I/O. As current ADIO does not sup-
port real asynchronous I/O, we will use additional threads
to implement asynchronous I/O. Second, the dedicated clus-
ter used in our experiments is of relatively small scale, and
the larger cluster was not available for dedicated use. Our
plan includes evaluating resonant I/O on a larger dedicated
cluster to obtain more insight into its performance charac-
teristics. Third, we plan to implement resonant I/O on top
of other state-of-the-art file systems, including Lustre, to
further evaluate its potential.
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